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Abstract

A theoretical and experimental investigation of thermal
conductance of two-dimensional constrictions has been carried
out for both symmetrical and eccentric constrictions. Ana-
lytical solutions for both of these cases have been obtained.
The solutions have been presented in terms of dimensionless
numbers - a conductance number and a constriction number for
the symmetrical case, and additionally an eccentricity
number for the eccentric case. A series of experiments have
been run by making use of the electrical analogy. Good
agreement has been found between the theories and experiments.
The results have also been compared with previously reported

experiments and theories.

Introduction

When heat flows through a constriction, a thermal

resistance (or conductance) develops because of the con-



vergence and divergence of the flow lines at and near the
constriction. This resistance is usually quite high com-
pared to the resistance offered to heat flow away from the
constriction. For a reliable heat transfer analysis of a
given system, such constriction resistances must be accurately
predicted in addition to other parameters. Especially, as
need for more dependable systems grows in aerospace, nuclear
and other industries, it is becoming increasingly necessary
for designers to be able to predict the thermal constriction
resistances or conductances with greater accuracy. Thermal
conductance of three dimensional constrictions has been
extensively investigated, presumably because of the fact
that it arises in the thermal conductance of contacts - a

(1,2,3) in the last

subject which has received wide attention
twenty years. 1In contrast, the problem of the thermal con-
ductance of two-dimensional constrictions has received little

(4’5)carried out an ex-

attention. Kouwenhoven and Sackett
perimental and theoretical study of electrical constriction
resistances. Using a simplified model they derived a
relationship - containing an experimentally determined para-
meter - for the symmetrical two-dimensional constriction
resistances, and also a relationship for the percentage

increase in resistances of eccentric constrictions. Mikic

and Rohsenow(s) obtained theoretical expressions, in the form

of infinite series, for symmetrical two-dimensional constriction

resistances for two different heat flux distributions at

the constriction. In practice, the two-dimensional constriction



conductance arises in heat transfer at fin bases, in heating

a material by means of an electric resistance, in cooling

a wall by means of a fluid circulating in tubes (see Figure 1),
and in similar situations wherever the constriction is two-
dimensional. It even arises in thermal contact conductances
when one of the contact surfaces has a two-dimensional rough-
ness and the other is relatively smooth.

The present work provides a theoretical and experimental
study of the subject for both symmetrical and eccentric con-
strictions. The solutions are expressed in terms of dimen-
sionless numbers. The results are compared with the previously

reported experimental data and theories.

Theory

First a solution for the thermal conductance of two-
dimensional constrictions will be obtained for the symme-
trical case, i.e., when the symmetry axes of both the heat
channel and the constriction coincide, and then the eccentric
case will be studied.

Symmetrical Constriction

Fig. 2 shows the steady state isotherms and heat flow
lines for a two-dimensional symmetrical constriction. The
heat flow channel width is 2a, the constriction width 2b,
and the channel thickness t. Because of the symmetry, it
will suffice to consider only one of the quarter planes,
e.g., the one bounded by positive x and positive y axes.

The steady state temperature distribution must satisfy the
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Laplace's equation,
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and the following boundary conditions,
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The temperature distribution satisfying equation (1) and
the conditions (2) can be obtained from a very simple,
linear, temperature distribution by means of two conformal
transformations. Fig. 3 illustrates these transformations.
Consider the quarter flow channel having no constriction
and bounded by X = o, X = a, and Y = o lines in the complex
Z plane (Fig. 3a). For heat flow along the channel, the
steady state temperature distribution is given by

T = MY teereconcennens ettt et e (3)
where m is a constant. Equation (3) satisfies the Laplace's

equation and the boundary conditions of,

(%_)= 0 0o <Y <« or along OP
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The constant temperature along X axis has been taken as
zero for convenience.

The region POQR of the complex Z plane can be trans-
formed into the region POQR of the complex w plane (see
Fig. 3b) by means of the conformal transformation of,

=b 51n( ) .................................. (5)

which preserves the Laplace's relationship and the boundary
conditions along the transformed boundaries. Writing

Z =X + iY and w = u + iv in the transformation relation-
ship (5) and considering the real and imaginary terms, one
obtains,

u=> 51n( )cosh( ) ............................ (6)
and v =D>b cos&-—)51nh( ) .................. Cee e (7)

Eliminating X between equations (6) and (7) and solving

for v,

2 2 2 2 .2.2 2 2
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Substituting equation (8) in (3), the temperature distribution

T in the transformed region becomes,

2 2 2 2 .22 2 2
T = %ﬂcosh_l u_+v_+ J(u +V2fb ) +4b v (L (9)

b

Now the region POQR of the complex w plane can be trans-
formed into the region POQSR of the complex z plane (see

Fig. 3c) by means of the conformal transformation of,

sin(-ILE
w=D>b ———————
s:Ln(ﬂb



which also preserves the Laplace's relationship and the
boundary conditions along the transformed boundaries.

The transformed boundaries and the boundary conditions
are exactly those of the original problem posed. From
equation (10), the following transformation relationships
for the co-ordinates are obtained,

b

= in (&£ Yy
T RGO (11)
2a
__b KKy e ny
Vo= — cos(537) sinh(53) ...l . (12)
sin (=)
2a
Substituting equations (11) and (12) in (9), and writing
the trigonometric and hyperbolic functions in terms of
double angles or arguments, the steady state temperature
distribution in a constant width flow channel with a symme-
trical constriction becomes,
Xy _ Iy
ma -1 cos(—-—)a cosh(a)
T = — cosh - o
T 1 - cos (=)
a
) " —
2 zb 2 2x 2 myy £.4°) X LYy _
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The thermal resistance introduced as a result of the
constriction in the heat flow channel can be defined as,
AT
c
Rc— H ® 8 S 4.6 % 0 0 0 0 U 9 S S S S 9 S S 0 G0 OO L e O OGS e (14)

where ATc is the additional temperature drop produced by
the constriction and H the heat flow rate in the channel.

The temperature drop ATC can be calculated from,



ATC=L1m1t{T-y§T} et ceeeenen.. (15)
yye® Y

In this equation the first term within the brackets rep-

resents the actual temperature drop between y=® and y=o0

(constriction) and the second term the temperature drop

between the same two points if therewere no constriction.

Substituting equation (13) in (15) and taking the limit,

the constriction temperature drop becomes,
ATC=%;Eln{—-—Lﬂ3—} et tee ettt (16)

sin (53
The heat flow rate H can be calculated from,

H = (channel C. 8. A.) (Thermal Conduct1v1ty)( )

y—-oo
or H=2atk( ) ® 6 6 0 ¢ 5 5 065 86 000 060690000000 s e (17)
y—oo
From equation (13), the temperature slope at y== is,
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Substituting equation (18) in (17), the heat flow rate
becomes,

H = 2amtk e e 1))
Substituting equations (16) and (19) in (14), the thermal
constriction resistance (for one side of the constriction)

is found to be,

1 1 .
Rc_nkt ln{ } .-....-...........-(20)

. b
sin (2a
The constriction conductance per unit area of the flow

channel, by definition, is,
1
(Channel C.S.A.)R,

u =



or
nk

u = 1 © s e s s e s s e e s s esee s (21)
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This result can be reduced to a relationship between two

dimensionless numbers. Defining a constriction conductance
number U and a constriction number C as,

U =Y (Channel width) _ 2au
el k - k e % ¢ o 0 0 e 0 0 0 0 a0 0

(22)

_ Constriction width _ 2b _ b
and € = " Channel width T 2a a cereeeenn.(23)

and combining equations (22) and (23) with (21), the following

relationship is obtained,

S
e ecerreeceseeaenaeaa.. (24)
inf—=1
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Eccentric Constrictions

U =

Fig. 4 shows a two-dimensional eccentric constriction.
The dimensions of the heat flow channel are the same as those
of the symmetrical case, except for the new dimension of
eccentricity e, the distance between the center-line of the
heat flow channel and the center-line of the constriction.
In this case, the steady state temperature distribution must
satisfy the Laplace's equation and the following boundary

conditions for the cartesian co-ordinate system geometry

selected,
& = o 0 <Y <® i . (25)
X=0
T, - -
(ax) - o O<Y< LN e e v 0 0 o 0 o 0 . .(26)
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The temperature distribution which satisfies the Laplace's
equation and the boundary conditions (25) and (26) is given

by,

T = my +i B exp (- & ) cos (n“x) e eeee e (29)

where m is the temperature slope at y=« and Bn a constant,
dependent on the number n. It is difficult to satisfy mixed
boundary conditions, such as given by equations (27) and (28),
a temperature slope condition and a temperature condition
respectively. 1In order to overcome this difficulty, the
temperature boundary condition (28) will be replaced by a
temperature slope boundary condition, in a way similar to

that used by Mikic and Rohsenow(G)

for the symmetrical con-
strictions. If g is the flux along the constriction in the
negative y direction, the new boundary condition, replacing
condition (28), becomes,
( ) _ %_ ate-b<x<a+e+b ............ (30)
Yy=o
The temperature slope at y=o is found from equation (29) to

be,

3T = _ nn nax
(ay) m Z 2aB COS(za) -o-c--o.--o-o.....(3l)
y=0 n=1

In the determination of the constants B, satisfying
the boundary conditions (27) and (31), both sides of equation

(31) are multiplied by cos( )dx and integrated from x=o0 to
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x=2a by substitution of the defined temperature slopes, and

the following result is obtained,
a+e+b

4 cos(

nax
" 3 )

= - A
dx- 2 Bn e« 9 ¢ 8 0 5 & v 0 0 0 0 o . (32)

a+e-b
An assumption of uniform flux distribution over the con-

striction gives,

Heat Flow Rate in Channel

qa= Constriction Area
2atmk amk
or qd = opt =T cererrececens B X))

Substituting equation (33) in (32) and carrying out the

integration, one obtains,

n 2 2

2
B = - _8am ln(n“b)cos [ (a+eﬂ ceeseressas  (34)
n" b

Substituting equation (34) in (29), the temperature distri-

bution becomes,
o]

2
T = my -E .8_3_1:121; sin (nytb)cos [g—;—(a+e)] exp (- -g—;x)cos (%1%) (35)
nel '™

The additional temperature drop ATC produced as a result
of the constriction is given by,

ATC=Limit ( )_T R EEE RN (36)
y-0 Yy=e

The apparent discrepancy between this equation and equation (15),
for determining the constriction temperature drops, is caused

by the fact that in the temperature distribution used in
equation (15) the constriction temperature was selected to be
constant (zero) whereas in the temperature distribution used in

equation (33) the temperatures far away (y==) from the constriction
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are taken to be invariant with the size and eccentricity of

‘the constriction. Substituting equation (35) in (36) and

taking the limit,

So : 8a’nm nrb
ATC= > '2 si n( L )cos[—(a+e)] cos(n“x) ceessse {37)
n=ln n° b

This temperature drop is not constant for a given constriction

but a function of the co-ordinate x along the constriction.
This is caused by the approximate nature of the constriction
flux distribution used in finding the temperature distribution.
Consequently, for the evaluation of the thermal constriction
conductance, a mean constriction temperature drop ATcm will be

defined as,

a+e+b
1
ATcm"'-zg IATcdx .....00000-00000000(38)
a+e-b

Substituting equation (37) in (38) and integrating, one obtains,

3

pp = iam 2, n"b n"(a+e) ... (39)
cm 3 3,2
n“n b

Considering one side of the constriction, the thermal constriction

conductance per unit area of the flow channel is given by,

Substituting equations (35) and (39) in (40),

3,2
u = bk -ooooo_.-oo(4l)

3 1 2 nnb 2inn
l6az: 3s:.n ( )cos [Za(a+e)]

n—l

The number of variables in the above equation can be reduced
by introducing dimensionless numbers U and C defined earlier,

and a new dimensionless number, eccentricity number E, defined
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as,
E = Tor e (42)
so that E varies between 0 and 1 for a given C. Equation
(41) can now be written in dimensionless form by using
equations (22), (23) and (42), resulting in the following
expression,
o’ e (43)

Z ——81n (-r?lz—ﬂc)cos2 [—%‘-(1+E-—EC)]

It will be seen later that the actural flux distribution
along the constriction is not uniform but a parabolic distri-
bution, and that assumption of a uniform flux distribution -
made in obtaining the above relationship - leads to lower
constriction conductances. Hence, the above relationship
will only be used to obtain the ratio of the conductance
number for a given eccentricity to that for zero eccentricity
so that the errors introduced by the uniform flux assumption
would tend to cancel out. If Uo is the conductance number
for no eccentricity, then the ratio is given by,

u__U_

e - . . 4 9 6 8 6 &8 0 & 8 8 8 % s 6 e 0 s 0 8 e 8 e (44)
Uo E=0
Substituting equation (43) in (44), the conductance ratio
becomes, 2
1 . 2
=3 sin” (nxC)
n=1 vee seeeaeas (45)

u_
v_ =
E _3 s:Ln (—-—c)cos 2“ (l+E—EC)]

To calculate the conductance number, the exact solution for

U_ given by equation (24) should be used in connection with
o
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the above equation for more precise results. Thus, one obtains,

1 . 2
T —3 sin (nxC)
n

U = n=l (46)
8 ln{———L——— E —%-sinz(%§c)cosz[%£(l+E—ECﬂ
sin (%c) — P

in preference to equation (43). A study of equation (46)
shows that U decreases with increase in E and reaches one-half
of the value for the symmetrical case when E has its maximum

value of unity.

Experiments

Two series of experiments - one for the symmetrical
constrictions and one for the eccentric constrictions -
were carried out by making use of the analogy between heat
and electricity flows. With the electrical analogy it was
easier to reproduce the boundary conditions of the models
used, and also the time required to run the experiments was
greatly reduced.

Fig. 5 shows the specimens used in the experiments.
They were cut from Teledelto's electrical resistance paper
No. L-48, in sizes 2 inches wide and 13 inches long. Con-
strictions were cut in the middle of the specimens. The
specimens for studying the symmetrical constrictionsrepresented
one-half of the mathematical model, while the specimens for
studying the eccentric constrictions represented the complete
mathematical model. The constriction half-width b for sym-

metrical case was varied between 1/8 inch to 1-7/8 inches in
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1/8 inch steps. In specimens with eccentric constrictions the
constriction width 2b was constant and equal to 1/4 inch while
the eccentricity distance e was varied between 0 and 7/8 inch
in 1/8 inch steps.

The experimental set-up is shown in Fig. 6. It was an
electrical circuit for measuring the electrical resistance of
the specimens and consisted of a constant voltage D.C. power
supply (0-40 vDC, 0-5000ma), a milliammeter (0-1Oma), a high
sensitivity voltmeter (0-50 V) and a switch. Each specimen
was painted at the ends over a length of 1/2 inch with low
resistivity silver paint. Then the specimen was connected
into the circuit by means of two steel fastening clips with
tapering widths as shown in the figure. This arrangement
insured a uniform current density over the ends of the speci-
mens. The voltmeter probes were placed 8 inches apart and
symmetrically with respect to the constriction.

In tests for studying the symmetrical constrictions only
one specimen was used. It was placed in the circuit without
any constriction and a D.C. potential of 20 volts was applied
across its ends. The voltmeter and ammeter readings were
taken. Then a 1/8 inch cut was made in the middle of the
specimen in order to provide a constriction, and a mica in-
sulating sheet was put into the cut to avoid any electrical
contact across the cut. The power was subsequently turned on
and the readings were recorded. This procedure was repeated
for decreasing constriction widths, in steps of 1/8 inch

decrease at a time.

In tests for studying the eccentric constrictions,
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different specimens had to be used for different eccen-
tricities. They were all cut out from the same piece of
resistance paper in order to obtain a degree of uniformity
in their properties. 1In addition to specimens with 1/4
inch constrictions, one specimen was prepared with no
constriction. The tests were run as described above.
Using the voltmeter and ammeter readings, the resis-
tance of the specimen between voltmeter probes for each
experiment was calculated. Let R, be the resistance with
no constriction and R the resistance with constriction.
Then, considering only one side of the constriction, the
additional resistance due to the presence of constriction

is given by,

R = (R-R;)/2 N 3
The constriction conductance per unit area of the specimen
cross section is,
1
v o= (Specimen C.S.A.) Rc
or, 2 (48)

ua = DI I I I I I I R A I I I N )

- A(R—Ro)

The dimensionless constriction conductance number, by definition,
becomes,

U=22aUp .iiiiinerernsrsonnotonnnnsoensensa (49)
where p is the specimen resistivity. The resistivity p
can be calculated from a knowledge of no-constriction re-

sistance as follows,
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where L is the distance between the voltmeter probes.
Substituting equations (48) and (50) in (49), the conduc-

tance number becomes,

4aRr

U=+ ....... e et (51)
L(R—RO)

For each test, the conductance and constriction numbers
were calculated using equations (51) and (23) respectively,
and when applicable the eccentricity number was calculated

using equation (42).

Results and Discussion

The theoretical and experimental results for the
symmetrical and eccentric constrictiors will be considered

separately.

Symmetrical Constrictions

The results of the present study, together with those of
earlier investigators, are plotted in Fig. 7 as the conduc-
tance number U versus the constriction number C. The ex-
perimental points are those of the present experiments and

(4)

those of Kouwenhoven and Sackett who used metallic
specimens and electrical analogy in their experiments. The
length of their constriction was not zero, but had a finite
value. In other words, the constriction had a neck. The
theoretical curves consist of one obtained by Kouwenhoven

and Sackett(4) and two by Mikic and Rohsenow(6) and the

present one. Kouwenhoven and Sackett assumed that only a
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wedge-like part (made up of sides starting at constriction
edges and extending to flow channel boundaries by making a
certain angle 6 with the constriction plane) of the flow
channel near the constriction was effective in conducting
"electricity", derived an expression for the wedge resistance
in terms of the angle 6 (= % - half wedge angle), and deter-
mined the angle 6 from their experiments for the best fit.
It was found to be 41.3°. Mikic and Rohsenow used essen-
tially the same model as the one used in the present study
with the exception that they specified the thermal flux
distribution at the constriction, and obtained two series
expressions for two different flux distributions - a uniform
flux distribution and a parabolic flux distribution. If H
is the total heat flow rate in the channel, these two flux

distributions can be expressed by the following expressions

respectively,

_ _H_
d] T 2pt

H

and d, ='iI;§==i¥ R =)
n}b -x

From Fig. 7 it can be seen that the assumption of uniform
constriction flux distribution results in lower conductances
while the assumption of a parabolic flux distribution given
by equation (53) results in higher conductances. In the pre-
sent theory, the flux distribution at the constriction is not
pre~-specified. The solution obtained applies exactly to the
case where a symmetfy exists with respect to the plane of the

constriction. Using equation (13) it can be shown that the
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exact flux distribution at the constriction would be,

a= -k
Yyeo
H cos(“—x-)
or q = 23 = R (54)
2ajg1n2(“b) 31n2¢%§)

According to this equation, the flux distribution at the
constriction is a function of the channel dimension as well
as the constriction dimension. If b << a, and hence x << a,
equation (53) becomes a special case of equation (54).

From Fig. 7 it can be seen that there is a very good
agreement between the present experiments and theory. The
experimental points of Kouwenhoven and Sackett also agree
very well with the present theory, with the exception of the
point corresponding to C = 0.5. The divergence there could
have been produced by the errors introduced due to the finite
constriction neck. Any such error should be large for high
values of C, since the constriction neck resistance would
then be large as compared with the constriction (spreading)
resistance. It is noteworthy that the experimental points
of Kouwenhoven and Sackett are in better agreement with the
present theory than their theory, although the angle 6 of
their theory was so selected as to give the best fit with

the experiments. |

Eccentric Constrictions

The results of the present investigation and reference (5)

are plotted in Figs. 8, 9 and 10 as the ratio of the conduc-
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tance number to that of zero eccentricity U/UO versus the
eccentricity number E for the constriction numbers of 0.125,
0.08 and 0.04 respectively. The experimental points are

those of the present experiments (C=0.125) and those of
Sackett(S) (C=0.08 and C=0.04) who used metallic specimens
with finite constriction necks and electrical analogy in his
experiments. The theoretical curves were obtained from the
present theory using the appropriate values of the constric-
tion number C and also from a relationship derived by Sackett.
In his theory, Sackett employed the same wedge model described
earlier and obtained a relationship for the ratio of the resis-
tance increase due to eccentricity to the constriction resistance

for zero eccentricity. In terms of the present dimensionless

numbers, it can be written as,

1
ln(c) + C~-1

=][=

= 1
© ln{c(l—E+Ec)}' (1+E) (1-C)

Since a function (tangent) of the wedge angle 8 enters the
resistance (or conductance) relationship as a product, in the
conductance ratio U/UO they cancel out and the ratio becomes
independent of the wedge angle selected.

From Figs. 8, 9 and 10, it can be seen that the agree-
ment between the experiments and both the theories is good
at or near the extreme values of the eccentricity number,
i.e., E=0 and E=1. However, in the region between the
extreme values of E, the present theory's agreement with

the experiments is much better.



"'20— ‘

Conclusion

One closed form equation is derived for calculating
the exact thermal conductance of two-dimensional symmetrical
constrictions, and an infinite series equation for the thermal
conductance of two-dimensional eccentric constrictions. The
agreement between the theory and experiments for both cases
is good. Thermal conductance of two-dimensional constriétions
increase with (a) increase in thermal conductivity, (b) in-
crease constriction width, (c) decrease in channel width,

and (d) decrease in eccentricity.

Acknowledgements

The research reported in this paper was carried out
under the sponsorship of the National Aeronautics and Space
Administration, under Grant NGR 10-007-010. The assistance
of Mr. J. D. Patel and Mr. M. Sniad, both of the University

of Miami, is gratefully acknowledged.



~21-

References

Gex, E. D., "Thermal Resistance of Metal-to-Metal
Contacts - An Annotated Bibliography", ASTIA Document
263181, July 1961.

Atkins, H.L., "Bibliography on Thermal Metallic Contact
Conductance", NASA Marshall Space Flight Center, NASA -
TM-X-53227, 26 pp, April 1965.

Vidoni, C. M., "Thermal Resistance of Contacting Surfaces:
Heat Transfer Bibliography", University of cCalifornia,
Lawrence Radiation Laboratory, UCRL~14264, AEC Contract
No. W-7405-Eng.-48, June 1965.

Kouwenhoven, W. B., and Sackett, Jr., W. T., "Electrical
Resistance Offered to Non-uniform Current Flow",
Welding Research Supplement, pp. 466s-470s, October 1949.

Sackett, Jr., W. T., "Contact Resistance", Ph.D. Dis-
sertation, The Johns Hopkins University, 1950.

Mikic, B. B., and Rohsenow, W. M., Appendix D, "Thermal
Contact Resistance", M.I.T., Heat Transfer Laboratory
Report No. DSR 74542-41, Contract No. NGR-22-009-065,
September 1966.



Symbols

>

TP o H QO W o

—
=]

=)

S a4+ A W ™ O a xv o

X X E <

=

-22-

Nomenclature

Cross—-sectional area of flow channel

Half width of Heat Flow Channel

Constant

Half width of Constriction

Constriction Number (=b/a)

Eccentricity Number (=e/(a-b))
Eccentricity

Heat flow rate

IEn

Thermal conductivity

Flow channel length; Distance between
voltmeter probes

Natural logarithm

Proportionality factor; Temperature slope
away from constriction

Origin; Point in flow channel boundary
Point in flow channel boundary

Thermal flux

Point in flow channel boundary
Resistance; Point in flow channel boundary
Point in flow channel boundary
Temperature

Flow channel thickness

Conductance Number (=2au/k)

Abscissa in complex w plane; Constriction
conductance per unit area

Ordinate in complex w plane

Complex plane

Abscissa in complex Z plane

Abscissa in two-dimensional plane; Abscissa

in complex z plane

Ordinate in complex Z plane
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m
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Ordinate in two-dimensional plane, Ordinate
in complex z plane

Complex plane

Complex plane

Difference

Angle

Resistivity

Constriction
Mean
Number

No-constriction
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FIG.2. HEAT FLOW LINES AND ISOTHERMS IN TWO
DIMENSIONAL SYMMETRICAL CONSTRICTION
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FIG.5. SPECIMENS USED IN EXPERIMENTS FOR STUDYING
TWO DIMENSIONAL CONSTRICTION CONDUCTANCES
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